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Abstract

Capacity expansion models in the power sector were among the �rst applications of operations

research to the industry. The models lost some of their appeal at the inception of restructuring

even though they still o�er a lot of possibilities and are in many respect irreplaceable provided they

are adapted to the new environment. We introduce stochastic equilibrium versions of these models

that we believe provide a relevant context for looking at the current very risky market where the

power industry invests and operates. We then take up di�erent questions raised by the new environ-

ment. Some are due to developments of the industry like demand side management: an optimization

framework has di�culties accommodating them but the more general equilibrium paradigm o�ers

additional possibilities. We then look at the insertion of risk related investment practices that devel-

oped with the new environment and may not be easy to accommodate in an optimization context.

Speci�cally we consider the use of plant speci�c discount rates that we derive by including stochas-

tic discount rates in the equilibrium model. Linear discount factors only price systematic risk. We

therefore complete the discussion by inserting di�erent risk functions (for di�erent agents) in order

to account for additional unpriced idiosyncratic risk in investments. These di�erent models can be

cast in a single mathematical representation but they do not have the same mathematical properties.

We illustrate the impact of these phenomena on a small but realistic example.

Key words: capacity adequacy, risk functions, stochastic equilibrium models, stochastic discount

factors
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Introduction

The restructuring of the electricity industry led to an explosion of literature transposing and extending

optimization models of short-term operations to equilibrium models of electricity markets with given

infrastructure. The optimal dispatch and its extension to the optimal power �ow are the reference opti-

mization paradigms at the origin of that literature. They cover energy and transmission and sometimes

encompass other services such as reserve. These models were instrumental in analyzing market design.

Variations of these models that encompass market power were also extensively developed to examine

market structure.

Capacity expansion models are as old as the optimal dispatch models but the transition from op-

timization to equilibrium models has not yet taken place. The early optimization models of capacity

expansion go back to the late �fties when the industry was still regulated (Morlat and Bessière, 1971).

The problem was �rst formulated as a linear program but further developments quickly followed suit and

extensions covered all types of optimization techniques. Capacity expansion, which was initially seen as

a true planning exercise was easily reinterpreted in terms of equilibrium in a competitive energy economy

in the early seventies after the �rst energy crisis. The power industry of the seventies was still regulated

on a cost plus basis that largely protected it from risk. Deterministic models were thus satisfactory in the

situation of the time. Restructuring removed that protection at the same time that various new policies

and external events dramatically increased the risk surrounding the electricity sector. This emergence of

risk in the investment process strongly suggests to move the analysis from a deterministic to a stochas-

tic environment. The question is thus to transpose former optimization capacity expansion models to

stochastic equilibrium models. This extension is the subject of this paper.

The �rst analysis of a capacity expansion problem in terms of a stochastic equilibrium capacity ex-

pansion model in the energy area is probably found in Haurie et al. (1988). The model deals with

gas developments and was formulated as an open loop Cournot equilibrium under demand uncertainty.

This model could be converted to an optimization model that was later used in Gürkan et al. (1999) to

illustrate the method of �Sample Path� since elaborated by several authors. Lin and Fukushima (2009)

recently reviewed di�erent models of stochastic equilibrium, among them the one used by Gürkan et al.

(1999) in their application of sample path to the investments in gas production. This model is stated as

a stochastic variational inequality problem; we adopt the closely related formulation of stochastic com-
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plementarity problems as the modeling paradigm of the investment problem throughout this paper.

Section 1 of the paper introduces a very simple and standard two-stage version of a stochastic op-

timization capacity expansion model as could have been constructed in the regulated environment. We

adopt a standard stochastic programming approach and present the model in terms of its �rst and second

stages. We then immediately reformulate this problem in the stochastic equilibrium format that drives

the whole paper. Section 2 discusses the possibilities and limitations of stochastic equilibrium models to

account for idiosyncrasies of restructured electricity markets.

The rest of the paper analyses di�erent risk issues encountered in the investment process. The standard

approach in investment problems is to re�ect risk in the discount rate. The discount rate is normally

regulated when the industry operates as a monopoly; this may have raised economic controversies but

did not create modeling di�culties as the discount rate is just a single parameter of the model. The

problem is quite di�erent in a world where �project �nance� drives the capacity expansion process and

requires that plants are evaluated on the basis of di�erent discount rates. The CAPM and the APT

are the reference theories for �nding these discount rates. Expositions of these theories can be found

in any textbook of corporate �nance and we take them for granted. The adoption of a project �nance

approach therefore requires the stochastic equilibrium model to accommodate plant speci�c discount

rates while maintaining the interpretation of a competitive economy that is the justi�cation of the model.

A �rst treatment of the question is given in Section 3 leading to a �xed point formulation. Section 4

adopts an alternative, probably more rigorous but also less usual representation of risk. Starting again

from a CAPM based formulation it assumes that the di�erent risks a�ecting plants can be taken care

of by modifying the payo� of the di�erent plants using a linear stochastic discount rate. Discounting

is then conducted at the risk free rate but with risk adjusted cash �ows computed with CAPM based

stochastic discount rates. Section 5 considers an alternative version of the risk neutral discounting where

the adjustment to the cash �ow is derived from risk functions. Risk functions were initially developed by

Artzner et al. (1999) and have been recently cast in an optimization context (see the book by Shapiro

et al., 2009 for a comprehensive treatment). We extend this view to an equilibrium context to construct

alternative adjustments of the cash �ows of the plants. We provide a simpli�ed but realistic illustration

of these notions in Section 6. Conclusion summarizes the paper. In order to simplify the presentation

the discussion is entirely conducted on a two or three stages models depending of our needs.
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1 The basic capacity expansion model

1.1 The optimization model

Consider a two-stage set up where one invests in a mix of new technologies in stage 0 and operates them

in stage 1. The objective is to satisfy a time segmented, price insensitive demand so as to minimize

total (annual in this simple case) cost. The �rst versions of these models go back to the late �fties.

They were initially formulated as linear programs and later expanded to take advantage of essentially all

optimization techniques. We introduce these models as follows.

Consider a set of capacity types K and a load duration curve decomposed in di�erent time segments

L as depicted in Figure 1. The left �gure gives a general decomposition and characterizes each time

segment by its duration τ(`) and demand level d(`). The right �gure depicts the particular case of a

decomposition into peak and o� peak segments.

τ(l)

d(l)

off peak

peak

Figure 1: Decomposition of the load duration curve

Assume in order to simplify the presentation that there is no existing capacity. We introduce the fol-

lowing notation: x(k) is the investment in capacity (in MW) of technology k ∈ K in the period; this

capacity is operated at level y(k, `) (in MW) in time segment ` of duration τ(`) (in hours) when demand

level is d(`) (in MW).
∑

` τ(`) = 8760 is the number of hours in a year. The annual investment cost of

technology k is I(k) (in ⊂=/MW) and its (constant) marginal operating cost is c(k) (in ⊂=/Mwh). PC is

the Value of Lost load (VOLL), that is the economic value (in ⊂=/Mwh) of unsatis�ed electricity demand.

The notion has been around since several decades but has so far escaped any precise evaluation. VOLL is
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thus often taken as a conventional value ranging between 1000 and 10 000 ⊂=/Mwh. PC can alternatively

be interpreted as a price cap, that is an upper bound on the electricity price set by the Regulator (�gures

ranging between 300 and 3000 ⊂=/Mwh are then found in practice); z(`) is the unsatis�ed demand in time

segment ` (in MW).

Adopting the standard two stage approach of stochastic programming, we successively write the second

and �rst stage optimization problems (dual variables are stated at the right of the equations) as follows.

The (short term) operations problem is stated as the following short term cost minimization problem

Q(x) ≡ min
y,z

∑
`∈L

τ(`)

[∑
k∈K

c(k) y(k, `) + PC z(`)

]
(1)

s.t.

0 ≤ x(k)− y(k, `) τ(`)µ(k, `) (2)

0 ≤
∑
k∈K

y(k, `) + z(`)− d(`) τ(`)π(`) (3)

0 ≤ y(k, `). (4)

The (long term) investment problem is stated as a long term cost minimization problem

min
x≥0

∑
k∈K

I(k)x(k) +Q(x). (5)

In accordance with the units used for de�ning the parameters and primal variables, µ(k, `) and π(`) are

in ⊂=/Mw. It is more convenient to refer to them as ⊂=/Mwh.

1.2 The equilibrium version of the optimization model

The conversion of the optimization model to an equilibrium model is obtained by writing duality relations.

The KKT conditions of the operations problem are stated as

0 ≤ x(k)− y(k, `) ⊥ µ(k, `) ≥ 0 (6)

0 ≤
∑
k∈K

y(k, `) + z(`)− d(`) ⊥ π(`) ≥ 0 (7)

0 ≤ c(k) + µ(k, `)− π(`) ⊥ y(k, `) ≥ 0 (8)

0 ≤ PC − π(`) ⊥ z(`) ≥ 0. (9)
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Those of the investment problem are

0 ≤ I(k)−
∑
`∈L

τ(`)µ(k, `) ⊥ x(k) ≥ 0. (10)

Complementarity formulations of capacity expansion models have been used by Gürkan et al. (2009)

to examine di�erent investment incentive policies in restructured markets. Our focus in this paper is

di�erent; we assume a single investment incentive mechanism throughout the paper (as embedded in the

model (6) to (10) and usually referred to as �energy only"); we then concentrate on the investment cost

I(k) that we examine through di�erent theories of corporate �nance.

Relations (6) to (10) can easily be interpreted in terms of a perfect competition equilibrium. For the

sake of brevity, we present this discussion in Appendix 1 and only report here the economic interpretation

of the dual variables that play a key role in the rest of the discussion. Most important for our purpose,

µ(k, `) is the hourly marginal value of capacity k in time segment `. It is zero if the capacity is not fully

utilized in that time segment; it is positive and τ(`)µ(k, `) measures the hourly marginal decrease of the

operating cost of the system in time segment ` if one adds a unit of capacity k. The hourly marginal

generation cost in time segment ` is measured by π(`). It is the sum of the operating cost c(k, `) and of

the hourly marginal value µ(k, `) of capacity k when it is operating. The price π(`) is set to PC when

load is curtailed.

The discussion developed in this paper focuses on the investment criterion (10). Its interpretation is

that one invests in technology k when the investment cost I(k) is equal to the weighted (by τ(`)) sum

of the hourly marginal values of the capacity µ(k, `) computed over all time segments. We refer to this

weighted sum
∑

` τ(`)µ(k, `) as the gross margin of plant k and note it in abridged form µ(k). µ(K) is the

vector of the µ(k) for k ∈ K. One does not invest in technology k when the gross margin is insu�cient to

cover I(k). Because of the interactions between the operation and investment stages, µ(K) is an element

of the subdi�erential ∂xQ(x) of the operating cost with respect to x (see Appendix 2.1). This is a point

to set mapping from R
|K|
+ into R|K|+ (Appendix 2.2). We can then restate µ(k, `) as µ(x; k, `) (and µ(k)

as µ(x; k)) in the above investment relation in order to express the dependence of the marginal value of

capacity on the amount of capacity. The investment criterion is then written as

0 ≤ I(k)−
∑
`∈L

τ(`)µ(x, k, `) ⊥ x(k) ≥ 0 (11)
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or in abridged form after writing µ(x, k) =
∑
`∈L

τ(`), µ(x, k, `) and collecting these expressions (11) for

all k

0 ≤ I(K)− µ(x,K) ⊥ x(K) ≥ 0. (12)

This complementarity relation summarizes the whole capacity investment model: assuming that one

knows the mapping µ(x;K) for a particular problem, the capacity expansion problem is entirely summa-

rized in (12). The properties of the mapping µ(x,K) intervening in this model have important implications

on the existence and unicity of equilibria. Because of the expository nature of this work, we only brie�y

mention these properties in passing and leave their detailed analysis for a further paper. We now extend

this model to the stochastic case.

1.3 Introducing risk

The introduction of risk factors generalizes the above model to a stochastic environment. Fuel costs c(k)

and demand levels d(`) are standard risk factors that immediately come to mind. Regulatory risks are

new risks that take a prominent role in the current environment of the �rm. They originate both from

the regulation of the power sector and from related domains like environmental regulation. The cost PC,

when interpreted as a price cap set by the Regulator is an illustration of regulatory risk: the Regulator

sets the price during curtailment. We make no assumption on the dependence or independence of these

risk factors. Let ω denote a scenario and Ω be the set of these scenarios. We note c(k, ω), d(`, ω), PC(ω)

as the exogenous fuel cost, demand and PC scenario. We also note y(k, `, ω), µ(k, ω), π(`, ω) as the

endogenous realisation of the primal and dual variables of the operation model in that scenario. The

formulation of the optimization and complementarity problems extends to this more general problem

by assuming risk neutral generators (investors) that see the same scenarios and share the same beliefs

(probability p(ω)) about their occurrence. This is stated as follows.

1.3.1 The stochastic capacity expansion optimization model

The second stage operations model in scenario ω becomes,

Q(x;ω) ≡ min
y,z

∑
`∈L

τ(`)

[∑
k∈K

c(k;ω) y(k; `, ω) + PC(ω) z(`, ω)

]
(13)

s.t.

0 ≤ x(k)− y(k; `, ω) τ(`)µ(k; `, ω) (14)
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0 ≤
∑
k∈K

y(k; `, ω) + z(`, ω)− d(`, ω) τ(`)π(`, ω) (15)

0 ≤ y(k; `, ω). (16)

The �rst stage investment part of the model is stated as

min
x≥0

∑
k∈K

I(k)x(k) + EpQ(x;ω). (17)

where Ep denotes the expectation under the p measure. For notational convenience, we sometimes also

refer to EpQ(x, ω) as Q(x).

1.3.2 The stochastic capacity expansion equilibrium model

As before, the equilibrium model is obtained by writing the KKT conditions of the second and �rst stage

problems respectively. For the second stage problem, we have

0 ≤ x(k)− y(k; `, ω) ⊥ µ(k; `, ω) ≥ 0 (18)

0 ≤
∑
k∈K

y(k; `, ω) + z(`, ω)− d(`, ω) ⊥ π(`, ω) ≥ 0 (19)

0 ≤ c(k;ω) + µ(k; `, ω)− π(`, ω) ⊥ y(k; `, ω) ≥ 0 (20)

0 ≤ PC(ω)− π(`, ω) ⊥ z(`, ω) ≥ 0 (21)

The �rst stage KKT conditions are stated as:

0 ≤ I(k)− Ep

∑
`∈L

τ(`)µ(k; `, ω) ⊥ x(k) ≥ 0 (22)

or after explicitly introducing the dependence of µ(k; `, ω) on x, and rewriting µ(x, k, ω) =∑
`∈L

τ(`)µ(x; k, `, ω) and collecting all k investment criteria

0 ≤ I(K)− Ep µ(x,K, ω) ⊥ x(K) ≥ 0. (23)

Again we sometimes also refer to µ(x, k) = Ep µ(x, k, ω) for the sake of notational convenience. Recall

that µ(x;K) is the |K| dimensional mapping formed by the µ(x; k). We refer to models of this type

(relations (18) to (22) or relation (23)) as the Fixed Demand Model (FDM) .

1.4 Focusing on the investment model

The complementarity condition (23) summarizes the whole equilibrium description of capacity expansion

in the stochastic case. It takes the form of a stochastic complementarity problem and could easily
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be extended to a stochastic variational inequality if there were constraints on the x variables. While

formulation (23) does not tell us anything that we could not have learned from the stochastic optimization

model, it allows one to state questions that remain relevant when formulating an equilibrium model

without being able to invoke an optimization problem to start with. The fundamental convexity property

that underlies a signi�cant part of the theory of stochastic programming carries through here by noting

that −µ(x;K, `) and hence −µ(x;K) is monotone in x (see Appendix 3 for the de�nition of a monotone

operator). The complementarity condition (23) resembles the stochastic equilibrium model introduced

in Gürkan et al. (1999). Note however that the mapping −µ(x;K) is upper semi-continous and not

continuous as in Gürkan et al. and in the more usual complementarity theory (see Appendix 2.2). The

next section discusses variations of this model.

2 Alternative equilibrium models of capacity expansion

2.1 Welfare maximization equilibrium models

We noted that -µ(x;K) is monotone in x but not continuous. This creates technical di�culties if one

wants to stick to the complementarity or variational inequality formulations, which are the more natural

way to state equilibrium problems. The following introduces a variant of the model that leads to a con-

tinuous mapping -µ(x;K) while at the same time being more in line with standard economic thinking.

The common assumption in economic theory is to suppose that demand varies with prices. Even then,

the common wisdom in electricity modelling is to admit that the demand of electricity is price insensitive

in the short run, as is e�ectively the case in the short run operations model (18) to( 21). This assumption

is then commonly but unduly extended to the long run and embedded in the investment model. There

are at least two reasons to question that extension. One is that demand, even if non price sensitive today

in the short run, is clearly price sensitive in the long run, which is the natural horizon for a capacity ex-

pansion model. Large industrial consumers will not keep their demand unchanged in the long run if they

anticipate high electricity prices. Similarly high electricity prices will induce conservation in household

and tertiary and hence reduction of demand. The second reason is that the increasing interest for de-

mand side management and the development of new technologies of the smart grid type will progressively

introduce a true price response in the short run. Taking stock of these two reasons we modify the above

model to encompass a demand function. We start with the optimization problem that we immediately

state in a stochastic formulation.
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Let d(p(`), `, ω) be the demand function in time segment `, and scenario ω. Both the demand and the

price in time segment ` and scenario ω are one dimensional. Assuming, as in standard economics, that

d(`, ω) is monotonically decreasing with p(`, ω), the function d(p(`), `, ω) can be inverted into p(d(`), `, ω)

for each time segment ` and scenario ω. We do not know much today about this demand function with

several studies giving widely diverging results (e.g., Newbery, 2003 quotes a long run price elasticity of

-1). It thus makes sense to embed the uncertainty on the demand function in the model, which justi�es

our introducing a dependence on ω in d(p(`), `, ω) and p(d(`), `, ω).

The stochastic optimization model of the short term welfare can then be stated as follows (in min-

imisation form) where MSTW stands for Minus Short Term Welfare:

MSTW (x, ω) ≡ min
y

∑
`∈L

τ(`)

[∑
k∈K

c(k, ω) y(k, `, ω)−
∫ d(`,ω)

0

p(ξ, `, ω)dξ

]
(24)

s.t.

0 ≤ x(k)− y(k, `, ω) τ(`)µ(k, `) (25)

0 ≤
∑
k∈K

y(k, `, ω)− d(`, ω) τ(`)π(`) (26)

0 ≤ y(k, `, ω). (27)

The long term welfare optimisation is similarly stated (in minimisation form) as

min
x≥0

∑
k∈K

I(k)x(k) + EpMSTW (x, ω). (28)

The equilibrium model is derived by writing the KKT conditions of that problem. We obtain for the

short run market

0 ≤ x(k)− y(k, `, ω) ⊥ µ(k, `, ω) ≥ 0 (29)

0 ≤
∑
k∈K

y(k, `, ω)− d(`, ω) ⊥ π(`, ω) ≥ 0 (30)

0 ≤ c(k, ω) + µ(k, `, ω)− π(`, ω) ⊥ y(k, `, ω) ≥ 0 (31)

0 ≤ π(`, ω)− p(d(`), `, ω) ⊥ d(`, ω) ≥ 0 (32)

while the investment criterion becomes

0 ≤ I(k)− Ep

[∑
`∈L

τ(`)µ(k, `, ω)

]
⊥ x(k) ≥ 0. (33)
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or after introducing the dependence of µ(k, `, ω) on x and de�ning µ(x, k, ω) =
∑
`

τ(`)µ(x, k, `, ω) and

assembling these relations for all k

0 ≤ I(K)− Ep µ(x,K, ω) ⊥ x(K) ≥ 0. (34)

The main di�erence between (34) and (23) is in the properties of the mapping µ which is here a monotone

continuous point to point mapping of the capacity x (see Appendix 2.3). We refer to this model (relations

(29) to (32) and (34)) as the Variable Demand Model (VDM).

2.2 Optimization problems that do not extend to equilibrium models

The above short run optimisation problems are of the convex type and hence have a well behave dual.

This allows one to write KKT conditions that can easily be interpreted in terms of perfect competition

equilibrium. Not all capacity expansion optimization models have a convex second stage optimization

problem. This is in particular the case when the second stage involves unit commitment features (start

up and shutdown of machines, minimum down and up time constraints). Considerable e�ort has been

devoted to the analysis of these questions in short term and hedging models (e.g. Eichhorn et al., 2010,

Kuhn and Schultz, 2009, and Römisch and Vigerske, 2010). We are not aware of any attempt to include

them in capacity expansion models. Second stage optimization models that include unit commitment

features cannot be converted into complementarity problems and hence in complementarity models of

equilibrium. Convexi�cation of these e�ects such as elaborated in Gribik et al. (2007) could however

lead to approximate equilibrium models.

2.3 Equilibrium models that do not derive from optimization problems

Leaving aside second stage optimisation problems that cannot be exactly converted into equilibrium mod-

els, we now consider equilibrium problems that cannot be obtained from KKT conditions of optimisation

problems. These abound in the electricity restructuring because of the diversity of organisations of the

electricity market and its numerous submarkets (e.g., transmission, reserve of di�erent quality). Di�erent

arrangements of other related markets such as the EU-ETS also easily lead to short run equilibrium

models that do not derive from optimization (e.g. Ehrenmann and Smeers, 2010). In the interest of

space we do not engage into that discussion here but simply illustrate our point by presenting an ex-

tension of the welfare maximisation problem described by equations (29) to (33) to a model where the

demand model cannot be integrated into a willingness to pay function. This problem originates in the

11



PIES model (Ahn and Hogan, 1982) that was built by combining a large linear programming model and

various heterogenous demand models that could not be integrated into a utility function (see Harker and

Pang, 1990, for the integrability property).

This variant of the equilibrium model can be stated as follows. Let D(ω) = (d(`, ω), ` ∈ L) and

P (ω) = (p(`, ω), ` ∈ L) denote the vectors of demand and price in the di�erent time segments. Smart

grid technologies aim, among other goals, at introducing storage possibilities across the di�erent time

segments. In other words, demand d(`, ω) in time segment `, no longer depends on the sole price p(`, ω)

in time segment `, but on the whole price vector P (ω). The objective is to create at the demand side,

storage possibilities that are so di�cult to achieve at the generation side. Taking stock of that extension,

we write the demand model as

D(P, ω) ≡ {d(P, `, ω), ` ∈ L}.

Assuming that the vector function D(P, ω) can be inverted into a system P (D,ω)

P (D,ω) ≡ {p(D, `, ω), ` ∈ L}

but that P (D,ω) cannot be integrated into a willingness to pay function (equivalently P (D,ω) is not a

gradient function) we replace the short run welfare maximization problem by the following equilibrium

conditions.

0 ≤ x(k)− y(k, `, ω) ⊥ µ(k, `, ω) ≥ 0 (35)

0 ≤
∑
k∈K

y(k, `, ω)− d(`, ω) ⊥ π(`, ω) ≥ 0 (36)

0 ≤ c(k, ω) + µ(k, `, ω)− π(`, ω) ⊥ y(k, `, ω) ≥ 0 (37)

0 ≤ π(`, ω)− p(D, `, ω) ⊥ d(`, ω) ≥ 0 (38)

These conditions cannot be obtained as KKT conditions of a welfare maximization problem. Still the

investment criterion remains

0 ≤ I(K)− Ep

[∑
`∈L

τ(`)µ(K, `, ω)

]
⊥ x(K) ≥ 0. (39)

Applying a well known integrability theorem (e.g. Theorem 1.3.1 in Facchinei and Pang, 2003), one can

show that the model would have been a stochastic optimization problem if the inverted demand system

P (D,ω) were integrable, that is, if it satis�ed

∂p(D, `, ω)

∂d(`′, ω)
=
∂p(D, `′, ω)

∂d(`, ω)
for all `, `′,
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This condition was not satis�ed in the PIES model (Ahn and Hogan, 1982); it will generally not be

satis�ed in multiperiod investments models where the demand models is �adapted� (demand in some

period depends on past prices but not on future prices (e.g. Wu and Fuller, 1996) and hence does not

derive from a multiperiod willingness to pay function. Even in single period investment model the demand

shifting properties created by smart grids will violate this integrability property. But even though we

cannot rely on an optimization model, the investment problem retains the standard complementarity

form (39) or with the usual short cut

0 ≤ I(K)− µ(x;K) ⊥ x(K) ≥ 0. (40)

Note that any demand system P (D,ω) that can be written as a gradient function satis�es the integrability

property. This is in particular the case of multiperiod perfect foresight demand systems. Problem (40)

can then be reformulated as an optimization model. The mapping µ(x;K) is continuous in x. Its

monotonicity properties depend on the demand system. We do not discuss the question here (see Aghassi

et al., 2006 for a discussion of convexity of asymmetric variational inequality problems).

3 Project �nance and asset speci�c discounting rates

Investments in a risky environment require risk adjusted discount factors. Speci�cally the two-stage

investment model (1) to (5) of section 1.1 requires converting the total plant investment cost I(k) into

the annual investment cost I(k). This is commonly done, using the standard formula

I(k)

T∑
t=1

1

(1 + r(k))t
= I(k) (in ⊂=/Mw) (41)

where T is the assumed life of the plant and r(k) is a discount rate. This annual investment cost can be

turned into an hourly capacity cost in ⊂=/Mwh by dividing by 8760 (the number of hours in a year).

The tradition in the regulated industry is to apply a single discount rate r to all equipment in capacity

expansion models of the type described by relations ((1) to (5)). This discount rate re�ects the risk expo-

sure of the company and is meant to provide the adequate remuneration of investors and lenders. In order

to simplify the discussion we assume a full equity �nancing (no debt) which means that r represents the

cost of equity. Cost plus regulation limited the risk bearing on the monopoly company and the Regulator

accordingly decided the discount rate and the allowed return on capital of the company. The long life

of the plants, the slowly evolving nature of the portfolio and the relatively surprise free evolution of the
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economy in a still recent past further contributed to reduce risk.

The restructuring of the sector and the introduction of a project �nance approach in investment

changed this practice. A generation unit is valued on the basis of its own merit, which in particular

means on the basis of its own risk exposure. The plant thus has its own risk adjusted discount factor.

A common practice (Graham and Harvey, 2001) is to derive these risk factors through a CAPM based

approach, applied this time to each plant separately. The CAPM theory of �nancial assets is extensively

discussed in any textbook of corporate �nance; in contrast its application to physical assets is much less

elaborated. A comprehensive treatment and appropriate references can be found in Armitage (2005),

which points to several drawbacks of the use of the CAPM for project evaluation. Notwithstanding

the reservations against the CAPM and its standard applications to physical assets found in the liter-

ature, we conduct the discussion in these terms because of the wide application of the method in practice.

The insertion of the project �nance view in capacity expansion models raises di�erent questions.

Some are due to the multiperiod discounting of the cash �ows. For the sake of brevity and in order to

stick to our two stage set up, we do not discuss them here and refer the reader to a companion paper

(Ehrenmann and Smeers (2009)). Other questions already arise in the two stage context adopted in this

paper. Suppose that I(k) is determined from the total investment cost I(k) of equipment k using formula

(41). Both the Fixed Demand (FDM: relation: (23)) or Variable Demand models (VDM: relation (34))

can be formally implemented by assuming exogenously determined r(k). This does not pose particular

computational di�culty in a two-stage model. The question discussed below is whether it is a consistent

treatment of risk.

We �rst note that the short term equilibrium models (relations (18) to (21) for FDM and relations

(29) to (32) for VDM) are una�ected by the choice of the discount rate. Each machine only appears in

these short term models through its capacity and variable cost; the market therefore �nds the short term

equilibrium irrespectively of the investment cost of these units. Things are di�erent in the investment

model ((23) for FDM and (32) for VDM). The analogy (see Armitage (2005), chapter 6, for a treatment

that goes beyond the analogy) between �nancial and physical assets that underlies the application of

the CAPM to physical assets suggests the following reasoning. A unitary investment in plant k buys a
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capacity 1
I(k)

, a unit capacity in that plant generates a payo�

∑
`

τ(`)[π(`, ω)− c(k, `, ω)]y(k, `, ω). (42)

Combining the two relations, the net return on investment in scenario ω of a unit investment in plant k

can be written as

R(k, ω) =

∑
`

τ(`)[π(`, ω)− c(k, `, ω)] y(k, `, ω)

I(k)
. (43)

Note that R(k, ω) and hence Ep[R(k, ω)] are results of the model established with given r(k). The ques-

tion is whether the returns R(k, ω) are compatible with the discount rate r(k) used for the equipment

or in other words whether r(k) = Ep[R(k, ω)] − 1. This requires explicitly invoking the underlying risk

theory, which in this section is the usual CAPM.

In order to do so we expand the de�nition of the scenarios by explicitly introducing the �market� M(ω)

and the return on the market R(M,ω) in scenario ω. These are additional data that need to be part of the

scenarios. Limiting the discussion to the �xed demand model for the sake of brevity, scenario ω therefore

encompasses assumptions on c(k, ω), d(`, ω), PC(ω), M(ω) and R(M,ω). In order to be consistent with

the CAPM, r(k) should be consistent with the return R(k, ω) accruing from an investment in plant k.

This implies imposing the standard CAPM formula

r(k) = rf +
cov(R(k, ω), R(M,ω))

σ2[R(M,ω)]
Ep[R(M,ω)−Rf ] (44)

where Rf is the gross risk free rate (1+ the net risk free rate rf ) . The investment models (23)(for FDM)

or (34)(for VDM) in a CAPM based environment are then completed by adding the two relations

I(k)

T∑
t=1

1

(1 + r(k))t
= I(k) (in ⊂=/Mw) (45)

where r(k) is satis�es

r(k) = rf +
cov(R(k, ω)R(M,ω))

σ2[R(M,ω)]
Ep[R(M,ω)−Rf ]. (46)

One can immediately see that the addition of these relations destroys the two stage decomposition

of the model by introducing a strong coupling between these stages. It also destroys any monotonicity

property. The model can however still be posed as a �xed point problem of r(K).
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4 Linear stochastic discount factors

The above approach requires solving a �xed point problem (a �circularity" problem in Armitage, 2005)

in order to �nd the r(k)) compatible with the endogenous risk exposure of the di�erent plants. This

is cumbersome. An alternative much lighter method introduced in Fama (1997) is to resort to CAPM

based deterministic equivalents of stochastic cash �ows. We present this approach in the context of the

more general theory of linear stochastic discount factors that embeds not only the CAPM but also the

less used Arbitrage Pricing Theory (APT) and the multitemporal consumer theory. As before we assume

an expanded de�nition of scenarios that includes the �market� M(ω). We refer the reader to Cochrane

(2005) or Armitage (2005) for discussions of linear stochastic discount rates and restrict ourselves to the

elements of the theory necessary for constructing the stochastic equilibrium models.

4.1 A primer on linear stochastic discount factors

Consider a two stage set up where one wants to assess in time 0 a cash �ow X(ω) accruing in time 1.

A stochastic discount factor(or price kernel or state price vector) is a vector m(ω) such that the value

of this cash �ow in stage 0 is equal to Ep[m(ω) ×X(ω)]. Both economic and �nance o�er theories that

allow one to construct the price kernel m(ω). Speci�cally (e.g. see Cochrane, 2005) the CAPM leads to

state a stochastic discount rate of the form

m(ω) = a− b×R(M,ω)

where a and b are determined to satisfy

Ep[m(ω) | ω] =
1

Rf

(m(ω) prices the risk free asset 1(ω) that redeems 1 in all scenarios ω), and

Ep[m(ω)×R(M,ω)] =
1

Rf

(m(ω) prices the �market� M(ω)). Because R(M,ω) and Rf are data of the problem, a and b and hence

the stochastic discount factor are also data to the problem.

The pricing kernel m(ω) and the payo� X(ω) do not necessarily span the same space. Let X =

Xm + X⊥m be a decomposition of the space of payo�s where Xm is the subspace spanned by m(ω)

(which has a nonzero covariance with m(ω)) and X⊥m the subspace orthogonal to Xm with respect to
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the scalar product Ep(x × y). In standard �nancial language, Xm(ω) is the systematic risk embedded

in the payo� X(ω) (the risk priced by m(ω) or the �market� in CAPM parlance) and X⊥m(ω) is the

idiosyncratic component of X(ω), that is the component that is priced to zero by m(ω).

We �rst explain that resorting to linear discount rates allows one to conduct all discounting at the

risk free rate and therefore eliminates the need for �nding a risk adjusted discount rate that re�ects the

risk exposure of the plants (in particular in order to �nd the annual value I(k)). We thus bypass the

need to solve a �xed point problem. In order to conduct the discussion with su�cient generality, we

depart from the two stage paradigm and consider a three stage set up where one invests in period 0 and

collects random payo�s X1(ω1) and X2(ω1, ω2) in periods 1 and 2. The stochastic discounting approach

extends as follows. Let m1(ω1) and m2(ω2|ω1) be the stochastic and conditional stochastic discount

factors in stages 1 and 2 respectively. Let also p1(ω1) and p2(ω2|ω1) be the probabilities and conditional

probabilities of the di�erent states of the world in stages 1 and 2 respectively. Proceeding recursively

from stage 2 to 0, the global value in 0 of the two cash �ows is equal to

Ep1 [m1(ω1)× [X1(ω1) + Ep2(|ω1)[m
2(ω2|ω1)×X2(ω2|ω1))]].

We now show how this expression can be restated in a form that only involves the risk free discount factor.

The value in stage 1 of payo� X2(ω2|ω1) conditional on ω1 can be written

Ep2(|ω1)[m2(ω2|ω1)X2(ω2|ω1)]

= 1
Rf

[
Ep2(|ω1)X

2(ω2|ω1) +Rfcov[m2(ω2|ω1), X2(ω2|ω1)]

]
= 1

Rf X̃
2(ω1)

where X̃2(ω1) is a deterministic equivalent in period 1 of the conditional cash �ow X2(ω2|ω1). The payo�

accruing in stage 1 and to be assessed in stage 0 is thus

X1(ω1) +
1

Rf
X̃2(ω1).

Conducting the same reasoning, the valuation in stage 0 of this random cash �ow in stage 1 can be

written as
1

Rf
X̃1,2.

One can now restate these manipulations by expliciting the di�erent contributions accruing in stages 1
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and 2. Speci�cally

X̃2(ω1) = Ep2(|ω1)X
2(ω2 | ω1) +Rfcov[m2(ω2 | ω1), X2(ω2 | ω1)]

is the deterministic equivalent in stage 2 of the conditional random cash �ow X2(ω2 | ω1). Similarly

X̃1(ω1) = Ep1X1(ω1) +Rf cov[m1(ω1), X1(ω1)]

is the deterministic equivalent in stage 1 (before discounting to 0 by 1
Rf ) of the random cash �ow X1(ω).

One observes that all discounting can be conducted at the risk free rate using CAPM based determin-

istic equivalent cash �ow (see Armitage, 2005 for a detailed treatment). This justi�es conducting all

the valuations at the risk free rate by working with risk adjusted cash �ows. The approach bypasses

the �circularity" of the standard discounting practice, here presented through a �xed point model. This

is the approach taken in the next subsection. It avoids resorting to the annoying �xed point problem

and is always compatible with the CAPM theory. In contrast the more standard discounting approach

su�ers from other circularity aspects arising when projects are also partially �nanced by debt (Fama,

1997). Last we shall see that the certainty equivalent cash �ow o�ers a good chance (but no guarantee)

of retaining the monotonicity properties of µ(x; k).

The models of Sections 4.1 and 3 are equivalent in this two-stage context, provided one makes the

assumption that the annual investment cost can be obtained by a single r(k) (unconditional CAPM). This

equivalence no longer holds in more general multiperiod cases where the certainty equivalent approach

(Fama, 1977) can always be applied but the risk adjusted discount rate requires some assumptions. We

thus follow the certainly-equivalent approach (Fama, 1977) that even though less usual, does not su�er

from the criticism addressed to the standard risk adjusted discounting.

4.2 Optimization and equilibrium models

Returning to the reference two stage set up, we assume that the annuities I(k) of plants k have been

computed from the total investment costs I(k) at the risk free rate Rf . We again begin with the

optimization form of the capacity expansion problem where the second stage objective function Q(x, ω)

is given by the short run model (2) to (4). Calling upon the notion of stochastic discount factor the value

in stage 0 of the total random cost incurred in stage 1 can be stated as RfEp[m(ω)Q(x, ω)] where m(ω)
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is the stochastic discount factor. The minimization of the total investment and operations cost can then

be stated as

min
x≥0

∑
k∈K

I(k)x(k) +RfEp[m(ω)Q(x, ω)] (47)

or

min
x≥0

∑
k∈K

I(k)x(k) + Ep[Q(x, ω) +Rfcov[m(ω), Q(x, ω)]. (48)

Recall that the state price m(ω) is exogenous to the problem(as in a CAPM based formulation)

and that the expectation with the price kernel is a linear operator that therefore introduces minimal

complications. The consequence is that the problem stated in the original variables x, y and z retains

the standard form of a convex stochastic optimization problem for which one can write KKT conditions.

Because the de�nition of Q(x, ω) remains unchanged, its KKT conditions are also unchanged: they are

restated below for the Fixed Demand Model

0 ≤ x(k)− y(k; `, ω) ⊥ µ(k; `, ω) ≥ 0 (49)

0 ≤
∑
k∈K

y(k; `, ω) + z(`, ω)− d(`, ω) ⊥ π(`, ω) ≥ 0 (50)

0 ≤ c(k;ω) + µ(k; `, ω)− π(`, ω) ⊥ y(k; `, ω) ≥ 0 (51)

0 ≤ PC(ω)− π(`, ω) ⊥ z(`, ω) ≥ 0 (52)

The model is completed by the KKT conditions of the investment optimization problem. These become

(using the abridged notation µ(x, k, ω))

0 ≤ I(K)−RfEp[m(ω)µ(x,K, ω)] ⊥ x(K) ≥ 0. (53)

Because −µ(x,K, ω) is a monotone operator, the expression −Ep[m(ω)µ(x,K, `, ω)] would then also

be a monotone operator (and problem (47) a convex problem in x) if the stochastic discount rate m(ω)

were non negative. This is not guaranteed, for instance for the stochastic discount rate derived from the

CAPM. It can then happen that the optimization problem (47) is unbounded because of those scenarios

ω where m(ω) is negative. From an optimization point of view an unbounded problem does not have any

dual solution. From an equilibrium point of view, −Ep[m(ω)µ(x,K, `, ω)] is no longer monotone and (in

this particular case) (53) has no solution. The origin of the problem is that the commonly used CAPM

method does not necessarily guarantee that all m(ω) are non negative (it does not satisfy the stochastic

dominance property). This is a matter of data on R(M,ω). The occurrence of negative m(ω) is thus

entirely a CAPM matter and is independent of the power problem on hand; this can be checked ex ante.
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Finally note that even though all annual investment costs I(k) are computed from the total investment

cost I(k) (including intermediary �nancial costs during construction) at a common risk free rate, and

the same state price m(ω) applies to all plants, the formulation e�ectively accounts for the risk exposure

speci�c to each plant. The method is thus fully in line with a CAPM based project �nance approach that

values each plant according to its risk exposure. This consistence is achieved through the deterministic

equivalent cash �ow.

Ep[m(ω)µ(x, k, ω)] = Ep[µ(x, k, ω)] +Rfcov [m(ω), µ(x, k, ω)] (54)

where cov[m(ω), µ(x, k, ω)] is the plant speci�c risk adjustment to the expected gross margin.

5 Non-linear stochastic discount rates and valuation functions

Linear stochastic discount factors price systematic risk but not idiosyncratic risk. The capacity expansion

model discussed in the preceding section is based on linear stochastic discount factors and hence only

prices systematic risk. The equilibrium model therefore complies with economic theories that claim that

idiosyncratic risk can only have zero price at equilibrium and hence can be discarded. It does not �t with

other economic theories that explain that agency costs allow idiosyncratic risk to intervene in decisions.

We assume in this section that agency costs may lead investors to account for idiosyncratic risk in their

decisions. Linear discount factors that only span a subspace of the payo�s cannot, by construction, re�ect

that phenomenon. The modern theory of risk functions allows one to expand the above equilibrium model

by introducing non-linear stochastic discount factors that we here apply to the subspace of the payo�s

that are not priced by m(ω). The theory of coherent risk functions originates in Artzner (1999); an

extensive treatment of these functions in optimization is provided in Shapiro et al. (2009). We here insert

coherent risk functions in equilibrium models. Because of the context of our model (focussing more on

positive cash �ows than positive losses) we conduct the discussion in terms of both risk and valuation

functions; depending on the context we want to �nd the �value� of a cash �ow or the �risk� of a cost.

5.1 A primer on coherent risk/valuation functions

Consider a two periods problem where one wants to assess in stage 0 a cash �ow X(ω) accruing in

stage 1. A valuation function ρ(X(ω)) gives a value to this cash �ow. In order to remain as close as

possible to the above discussion of stochastic discount factors we limit ourselves to coherent valuation
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functions introduced by Artzner et al. (1999) in a context of risk and now extensively developped in the

literature. Coherent risk/valuation functions ρ satisfy four axioms that are recalled in Appendix 4. We

are particularly interested in a representation theorem that states that every coherent valuation function

can be represented as

ρ(X(ω)) = Infm∈MEp[m(ω)×X(ω)]. (55)

whereM is a convex set of probability measures.

The representation theorem implies that a valuation function generates a stochastic discount factor

m(ω) which is the minimant of the above in�mum problem. This stochastic discount factor di�ers from

the one discussed in the preceding section in at least two respects. Because m is a probability measure, it

is non negative. This guarantees the monotonicity property (Axiom 2 in Appendix 4) that is sometimes

violated in stochastic discount factors derived from other theories such as the CAPM. Another major

di�erence is that this stochastic discount rate is a function of the payo� X(ω) and hence the valuation

process is a non-linear operator.

We accordingly write ρ(X(ω)) = Ep[m(X,ω) × X(ω)] and note that ρ(X(ω)) is a concave function

of X in the case of the risk adjusted valuation of a payo� (and a convex function for the risk adjusted

valuation of a cost). We also note that one of the axioms de�ning risk/valuation functions (Axiom 3 in

Appendix 4) immediately implies that the value of a risk free asset 1(ω) that redeems 1 in all states of the

world in stage 1 is equal to 1
Rf , or in other words ρ(1(ω)) = 1

Rf . The reader is referred to the original

papers of Artzner et al. (1999) and to the extensive discussion and the many examples of risk functions

(coherent or not) found in Shapiro et al. (2009). All this applies here whether to risk or value functions.

We conclude this brief summary by noting that, because risk/valuation functions give rise to stochastic

discount factors, they also allow one to restate the value of a random cash �ow as a deterministic equivalent

where all discounting takes place at the risk free rate. We brie�y recall the reasoning developed in the

previous Section 4.1 and adapt it to this non-linear case. We caution however that the multitemporal

discounting with risk/valuation functions raises questions of time consistency of these functions that

are not discussed here (see Artzner et al. (2002) and Shapiro et al. (2009)). In order to justify the

discounting at the risk free rate consider again a three stages set up where one invests in period 0 and

collects the random payo�s X1(ω) and X2(ω1, ω2) in stages 1 and 2 respectively. Let m2(X2|ω1, ω2|ω1)
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be the conditional stochastic discount factor derived from the valuation function in stage 2 for given ω1.

As before let p2(ω2|ω1) be the conditional probability of the di�erent states of the world in stage 2. The

value in stage 1 of payo� X2(ω2|ω1) conditional on ω1 can be written

Ep2|ω1
[m2(X2|ω1, ω2|ω1)×X2(ω2|ω1)]

= 1
Rf

[
Ep2|ω1

X2(ω2|ω1) +Rfcov[m2(X2|ω1, ω2|ω1), X2(ω2|ω1)]

]
= 1

Rf X̃
2(ω1)

where X̃2(ω1) is the deterministic equivalent in period 1 of the conditional cash �ow X2(ω2|ω1).

Let now p1(ω1) be the probability measure of the di�erent states of the world in stage 1. We need to

assess in stage 0 a payo�

X1(ω1) +
1

Rf
X̃2(ω1)

accruing in period 1. Conducting the same reasoning, the valuation in stage 0 of this random cash �ow

accruing in stage 1 can be written as
1

Rf
X̃1,2.

As in Section 4.1, one sees that all deterministic equivalent cash �ows are discounted at the risk free

rate provided these deterministic equivalents have been computed with the stochastic discount factors

derived from the valuation function. The implication is that the annual investment cost I(k) of a plant k

can be computed from the total investment cost I(k) using the risk free rate. This part of the reasoning

would remain true if we were to account for the question of time consistency alluded to above. But the

multitemporal discounting of the cash-�ows would be restricted to time consistent valuation functions.

5.2 Coherent risk/valuation functions and stochastic discount factors

Consider again the decomposition of the payo� space X = Xm + X⊥m where Xm(ω) and X⊥m(ω) are

respectively the systematic and idiosyncratic components of the payo�. Di�erent economic theories (e.g.

CAPM, APT, multitemporal consumption model) can be used to construct a stochastic discount rate

m?(ω) that prices the systematic risk while giving a zero value to the idiosyncratic risk. We introduce a

price for the idiosyncratic risk embedded in X(ω) by writing the value of the payo� in stage zero as

ρ(X(ω)) = Ep[m?(ω)×Xm?(ω)] + Infm∈M⊥m?Ep[m(ω)×X⊥m?(ω)]. (56)
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where m? prices the systematic risk (for instance as speci�ed in the CAPM) andM⊥m? is a set of prob-

ability measures ofM orthogonal to m? that price the idiosyncratic risk.

This expression requires a decomposition of the payo� into its systematic (priced by m?(ω)) and

idiosyncratic parts (orthogonal to m?(ω)). This is easily obtained by writing X?
m(ω) as the projection

of X(ω) on m?, or X(ω) =
cov[X(ω)m∗(ω)]

σ2(m∗(ω))
m∗(ω) + X⊥m∗(ω). The obtained expression X⊥m∗(ω) is

clearly linear in X(ω).

5.3 Optimization model

Consider now the risk adjusted capacity expansion optimization model. This model is expressed in terms

of costs, which justi�es our using the risk interpretation of ρ. We thus apply the above risk function to

the second stage cost Q(x, ω) and de�ne the following convex optimization problem.

min
x≥0

∑
k∈K

I(k)x(k) +Rfρ[Q(x, ω)] (57)

One obtains the KKT conditions of that optimization problem by concatenating the equilibrium

conditions of the short-term problem (18) - (21) with the following risk adjusted investment condition

0 ≤ I(K)−Rf ∂ρ

∂ν(ω)

∂Q(x, ω)

∂x
⊥ x(K) ≥ 0 (58)

De�ne the stochastic discount factor φ(x, ω) =
∂ρ(Q(x, ω))
∂ν(ω)

= m?(ω) + m(Q(x, ω)) and recall that

∂Q(x, ω)
∂x(k)

= µ(x, k, ω). The investment criterion is stated as

0 ≤ I(K)−RfEp(φ(x, ω)× µ(x,K, ω)) ⊥ x(K) ≥ 0. (59)

Note that the representation theorem implies that m(Q(x, ω)) is a probability measure. In contrast

m? need not be as the example of the CAPM discussed in the preceding section shows. µ(x;K) =

Ep(φ(x, ω)×µ(x,K, ω)) is a monotone operator when m? is non negative since ρ(X(ω)) is then a coherent

risk function (see Appendix 4).

5.4 Equilibrium models

The above formulation cannot be directly restated in competitive equilibrium terms. Speci�cally the de-

pendence of the stochastic discount rate on the total system cost or welfare has a natural interpretation
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for a risk averse monopoly company but it does not apply to agents of a market where the total cost

of the system is the sum of the costs incurred by these agents. We �rst discuss tentative equilibrium

interpretations of condition (58) by invoking di�erent assumptions of market structures.

Suppose without loss of generality that the market only comprises a single electricity consumer (noted

c) and the other agents (noted o ∈ O) own generation capacities xo(k), k ∈ K (x(k) =
∑

o∈O x
o(k), for

all k). Take �rst the Fixed Demand Model; the short run cost optimization model (of section 1.3) in

state of world ω can be restated in dual form as

Q(x, ω) ≡ max
∑
`

τ(`)[π(`, ω)d(`, ω)−
∑
k

µ(k, `, ω)x(k)] (60)

s.t.

π(`, ω)− µ(k, `, ω) ≤ c(k, ω) (61)

π(`, ω) ≤ PC(ω) (62)

π(`, ω) ≥ 0, µ(k, `, ω) ≥ 0. (63)

The dual objective function is the sum of the total payment for electricity by the consumer Π(ω) =∑
` τ(`)π(`, ω)d(`, ω) minus the sum over all plants of the gross margins µ(x, k, ω)xo(k) made by the

owners of the di�erent capacities xo(k). The total pro�t of capacity owner o is then Πo(x, ω) =∑
k µ(x, k, ω)xo(k).

We write

Q(x, ω) = Π(ω)−
∑
o∈O

Πo(x, ω). (64)

Recalling that the derivative of Q(x, ω) with respect to x(k) is the marginal pro�t µ(x, k, ω) accruing to

every owner of capacity k in state of the world ω when increasing this capacity, the investment condition

(59) could be associated to an owner o of capacity k if we could ascertain that
∂ρ[Q(x, ω)]
∂ν(ω)

= φ(x, ω) is

the stochastic discount rate of every capacity owner o making a pro�t
∑
k

µ(x, k, ω)xo(k). It remains to

identify if and when this latter condition can hold.

Consider �rst the case where all capacity owners o have the same generation structure xo, that is

the same portfolio of generation plants (generators are identical up to a scaling factor). Their pro�ts

Π0(x, ω) are then equal for all ω up to the scaling factor. Suppose also that they have the same risk

function. Let φo(Πo(x, ω), ω) be the stochastic discount factor of capacity owner o when it is making a
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pro�t Πo(x, ω) =
∑

k µ(x, k, ω)xo(k). Because these generators have the same share of di�erent plants,

the positive homogeneity of the coherent risk function ρ (Axiom 4 in Appendix 4) implies they also

have the same stochastic discount factor. Unfortunately, this common value is not necessarily equal to
∂ρ[Q(x, ω)]
∂ν(ω)

because the total cost Q(x, ω) which is the argument of the risk function in (58) contains

the term Π(ω) which is not proportional to Π0(x, ω).

Consider now consumer c. The stochastic discount rate of this consumer is φc(Π(ω), ω), which is equal

to
∂ρ(Π(ω))
∂ν(ω)

. Suppose now that we can arrange for

φo(Πo(x, ω), ω) = φc(Π(ω), ω) ∀ o (65)

then we also have

φo(Πo(x, ω), ω) = φc(Π(ω), ω) =
∂ρ

∂ν(ω)
[Q(x, ω)]. (66)

and (58) would be a true equilibrium model with risk averse consumers and generators having the same

stochastic discount factor.

Financial products can in principle help achieve equality (65) (Ralph and Smeers, 2010) even if gen-

erators are not identical up to a scaling factor. Suppose a market that trades bonds paying coupons

indexed on electricity and fuel prices. The owner of a plant could hedge its revenue by a portfolio of these

bonds. The consumer could also hedge its electricity payment Π(ω) with these bonds. The di�culty

of this reasoning is that it does not apply to idiosyncratic risk that, by de�nition, cannot be traded.

Stating model (57) as an equilibrium model may thus be an interesting counterfactual but it is only an

approximation that holds if idiosyncratic risk is not too important.

The same reasoning applies to the Variable Demand Model. Total welfare is the sum of consumer and

producer surplus, a relation that we write as

−MSTW (x, ω) =
∑

o∈O
∑

`∈L τ(`)[
∑

k∈K p(`, ω)− c(k, ω)]yo(k, `, ω)

+[
∫ d(`,ω)

0
p(ξ, `, ω)dξ − p(`, ω) d(`, ω)].

(67)

or MTSW (x, ω) = −
∑

o Πo(x, ω) − Πc(ω) where Πo(x, ω) and Πc(ω) are respectively generator o and

consumer c surplus. We can therefore interpret the variable demand version of (58) as an equilibrium

model if we can guarantee

φo(Πo(x, ω), ω) = φc(Πc(ω), ω) =
∂ρ

∂ν(ω)
(MSTW (x, ω)). (68)

25



Equality will hold for all generators if they have the same generation structure (again up to a scaling

factor). But equality between φo(Πo(x, ω), ω) and φc(Πc(ω), ω) can only hold if consumers and generators

can trade idiosyncratic risk. As before, this is not possible by de�nition.

In order to conclude the discussion consider an alternative market structure where each generator

specializes in one technology. The set O of generators o then coincides with the set K of technologies

k. By construction, we can no longer attempt to make the stochastic discount factors of the di�erent

generators equal. A �nancial market could still entail that equality if idiosyncratic risk could be traded

between generators and the consumer. But this is again impossible by de�nition of the idiosyncratic

risk. In conclusion we can retain model (59) completed by the short run equilibrium conditions (6) to

(9) or its Variable Demand Model counterpart as an ideal counterfactual but need to consider alternative

formulations that better account for the nature of idiosyncratic risk. The following presents di�erent

models that one can think of. They are all stated in the Fixed Demand Model form but can easily be

adapted to the Variable Demand Model. The two �rst models have the same short term market submodel

(69) to (72); the third model has a slightly modi�ed version that will be presented in due course.

0 ≤ x(k)− y(k; `, ω) ⊥ µ(k; `, ω) ≥ 0 (69)

0 ≤
∑
k∈K

y(k; `, ω) + z(`, ω)− d(`, ω) ⊥ π(`, ω) ≥ 0 (70)

0 ≤ c(k;ω) + µ(k; `, ω)− π(`, ω) ⊥ y(k; `, ω) ≥ 0 (71)

0 ≤ PC(ω)− π(`, ω) ⊥ z(`, ω) ≥ 0 (72)

5.4.1 Perfect risk trading or perfectly diversi�ed plant portfolios

Whatever the shortcomings of the optimization model (57) for representing an equilibrium it remains a

useful counterfactual because it represents an ideal situation of a complete market where idiosyncratic

risk could be traded, for instance through special insurance contracts. Also, because it is a convex

optimization problem, it is easy to compute. Note that it may be unbounded (and hence not amenable to

an equilibrium interpretation) when m∗(ω) has negative components. We simply restate the investment

part (which is similar to the criterion of equation (53) but not with a risk adjustment on welfare instead

of costs) of the model here without further discussion.

0 ≤ I(K)−Rf ∂ρ(Q(x, ω), ω)

∂ν(ω)

∂Q(x, ω)

∂x
⊥ x(K) ≥ 0 (73)
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that is rewriten

0 ≤ I(K)−RfEp(φ(x, ω)× µ(x,K, ω)) ⊥ x(K) ≥ 0. (74)

5.4.2 The project �nance approach

The project �nance approach is a second counterfactual where each plant is valued on the basis of its

own merit. Consider now a market where each agent invests in a particular technology. Let ρk be the

valuation function of agent k. The investment criterion leads to a formulation where each investor k

solves the following pro�t maximisation problem

min
x(k)≥0

[I(k)−Rfρk[µ(x, k, ω)]]x(k) (75)

where µ(x, k, ω) retains its interpretation of marginal value of a unit capacity of plant k in the short run

equilibrium when the system portfolio is x. The corresponding investment condition for plant of type k

is then

0 ≤ I(k)−RfEpφ
k(x, ω)µ(x, k, ω) ⊥ x(k) ≥ 0 (76)

where φk(x, ω) = m?(ω) + mk(
∑
`∈L

τ(`)µ(x, k, `, ω), ω). This condition applies to all plants k each one

being written with plant k speci�c stochastic discount factor φk (compare with Section 4 where a simple

stochastic discount factor applies to all plants). This problem can easily be converted into a variational

inequality problem if, as is often the case there are constraints on investment possibilities. Each mapping

−Epφ
k(x, ω)µ(x, k, ω) is monotone ifm?(ω) is non negative. Consider now the global investment criterion

0 ≤ I(K)− F (x) ⊥ x(K) ≥ 0 (77)

where F k(x) = −RfEpφ
k(x, ω)µ(x, k, ω). Even though each F k(x) is monotone, the mapping F (x) does

not necessarily satisfying this property.

5.4.3 Diversi�ed portfolio models

We now come back to the model with di�erent generators o that each invest in and operate a mix of

generating capacities. For the sake of realism we here complicate the problem and suppose that each

operator has an existing generation �eet xo(k) and is considering investing xo(k). We de�ne

x(k) =
∑
o∈O

xo(k) (78)

x(k) =
∑
o∈O

xo(k) (79)
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and modify the equilibrium conditions of the short run market in order to account for existing capacities.

These become

0 ≤ x(k) + x(k)− y(k; `, ω) ⊥ µ(k; `, ω) ≥ 0 (80)

0 ≤
∑
k∈K

y(k; `, ω) + z(`, ω)− d(`, ω) ⊥ π(`, ω) ≥ 0 (81)

0 ≤ c(k;ω) + µ(k; `, ω)− π(`, ω) ⊥ y(k; `, ω) ≥ 0 (82)

0 ≤ PC(ω)− π(`, ω) ⊥ z(`, ω) ≥ 0 (83)

The pro�t of generator o in state of world ω is then

Πo(x+ x;ω) ≡
∑
k

[xo(k) + xo(k)]µ[x(k) + x(k);ω] (84)

The investment criterion needs now be rewritten for each generator o

0 ≤ I(k)−RfEp[φo[Πo(x+ x;ω);ω]µ[x(k) + x(k);ω] ⊥ xo(k) ≥ 0. (85)

This criterion applies to the set of plants and can thus be rewritten as

0 ≤ I(K)− F 0(x) ⊥ x0(K) ≥ 0 (86)

where F 0(x) = RfEp[φ0[π0(x+ x;ω)µ[x(K) + x(K);ω]. The criterion must be stated for each generator

o. As for the project �nance model, this mapping is not monotone in general. This problem can easily be

converted into a variational inequality problem if, as is often the case there are constraints on investment

possibilities.

5.4.4 Comment

The loss of monotonicity in the �project �nance approach� and the �diversi�ed portfolio models� has an

economic interpretation. It is related to the need to value idiosyncratic risks that by de�nition cannot be

traded. This brings us into the domain of incomplete markets. We shall come back to this phenomenon

in further papers.

6 Numerical Illustration

6.1 The set-up

In this section we illustrate the impact of the investment criteria discussed in the main text on a simple

but realistic example that exhibits di�erent relevant features. Very much like the rest of the paper, the
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example illustrates a skeleton of real models. We �rst present the data for the deterministic model that

we then extend to a stochastic version. Consider a two stage problem: one invests in di�erent types of

capacities in stage 0 and operates them in stage 1. Following Joskow (2007), our benchmark example is a

three technology problem involving coal, combined cycle gas turbine (CCGT) and open cycle gas turbine

(OCGT). Each equipment type is characterized by its annual investment and �xed operating costs and a

CO2 emission factor. Because risk premia are endogenous in the stochastic equilibrium model, investment

costs are meant to be annualized from overnight construction costs at the risk free rate (see Table 1).

Coal CCGT OGGT

I: annual capacity and �xed

operating cost (k Euro/Mw)
140 80 60

e: emission t/Mwh 1 .35 .6

Table 1: Fixed annual cost and emission in a three technology world

All costs are assumed linear in capacity or operations levels implying that we neglect economies of

scale in generation. This assumption is common in capacity expansion models. Emission factors for each

plant are in tons of CO2 per MWh. These �gures are stylized views on costs and emission factors found

in the European industry at the time of this writing. They do not correspond to particular projects but

are realistic. The operating costs will be derived from fuel prices.

The deterministic model supposes one fuel price scenario and one scenario for CO2 prices. We assume

a simple price cap throughout the paper. These are shown in Table 2.

The load duration curve is segmented in 6 demand blocks in order to keep the model simple, while

still guaranteeing su�cient detail for arriving at meaningful results. Table 3 gives the relevant �gures

and units.

6.2 Introducing risk (Section 1.2)

The deterministic model only involves a single ω ∈ Ω. The stochastic model resorts to three probability

spaces (Load, fuel and CO2) and hence three probability measures. We generate three possible realisations

for each risk factor multiplying the hourly load level, variable operating costs and CO2 prices with the
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Coal CCGT OGGT

c(k): fuel and variable

operating cost ( Euro/Mwh)
25 45 80

CO2: price (Euro/ton) 20

PC: price cap (Euro/Mwh) 300

Table 2: Variable cost, price cap and CO2 price

power level and utilisation

d: MW 86000 83000 80000 60000 40000 20000

τ : duration (1000 hours) .01 .04 .31 4.4 3 1

Table 3: Reference load duration curve and its decomposition in time segments

factors listed in Table 4. Combining the three values we end up with 27 scenarios that are assumed

equally probable.

6.3 Alternative equilibrium models (Section 2): CO2 cap and free allocation

In order to illustrate the �exibility of the equilibrium framework we also consider slightly more complicated

versions of the simple capacity expansion model used throughout the paper where we include a simple

representation of the EU-ETS (Emission (of CO2) Trading Scheme, Ehrenmann and Smeers, 2010).

Assuming then that the CO2 price is determined in a cap and trade system we explicitly model the cap.

Starting from the emissions obtained in the deterministic base case which are found equal to 219mt, we

create 3 scenarios around this �gure by adding/subtracting 10 mt.As before, the three scenarios are equally likely.

We complicate this EU-ETS model and depart from an optimization model (see Ehrenmann and

Smeers, 2010) for a discussion of that extension) by considering the case where free allowances are

30



low central high

Load 90% 100% 110%

Fuel 70% 100% 130%

CO2 price 50% 100% 150%

Table 4: Scenario generation

low central high

CO2 cap 209 mt 219 mt 229 mt

Table 5: Scenario generation

granted to investors. These are usually linked to the expected running hours and to a share of expected

emissions covered by free allocation. We use expected running hours of 8000h for Coal, 6000h CCGT and

of 1000h for GT and assume a 20% coverage. The free allocation rule is then: free allocation= expected

running hours x emission rate x coverage.

6.4 Alternative equilibrium models (Section 2): Elastic Demand

We consider two cases of elastic demand. The �rst one is the standard situation where one assumes that

there is no cross price elasticity: demand in one time segment only depends on the price in that time

segment. The demand function is a�ne and calibrated as follows: we use a reference price equal to the

Long Run Marginal Cost of Coal (LRMC) at 8000h for the two lowest demand blocks, the LRMC of

CCGT at 6000h for the intermediate demand and the LRMC of a GT at 1000h. These are computed at

the fuel and CO2 prices of the deterministic case.

For a given elasticity we calculate the electricity consumption in node i as a function of the price :

Qi = αi − βi(pricei).
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power level and utilisation

d: MW 86000 83000 80000 60000 40000 20000

Reference price 152 152 65.3 65.3 62.5 62.5

Elasticity .5 .5 .5 .5 .5 .5

Table 6: Reference load and price

We calibrate the coe�cients αi and βi by writing

βi =
(elasticity ∗ demandi)

pricei

and

αi = demandi + pricei ∗ βi.

The second case deals with the much more novel situation where one supposes that developments of

the smart grid type allow for cross substitutions between time segments. We modify the demand function

into

Qi = αi −
∑
j

βij(pricej),

which makes demand in some time segment dependent on the electricity price in other time segments.

We set the cross elasticities so that the o�-peak demand increases if peak prices are very high, thereby

reproducing the storage e�ect intended in smart grid developments.

β61 -0.1

β62 -0.1

β51 -0.1

β52 -0.1

Table 7: Elasticities
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6.5 Systematic risk and linear discount factor (Section 4)

As explained in the text, the pricing of risk correlated to market risk requires inserting information

on market returns in the scenarios. In order to simplify matters we assume that the market return is

highly correlated with electricity consumption, fuel prices and, to a smaller extent with load. The results

together with the impact on the stochastic discount factor are given in Table 8.

6.6 Idiosyncratic risk and nonlinear discount factor (Section 5)

The pricing of idiosyncratic requires a risk function. We use the CVAR, which is now becoming standard

and is quite amenable to computation. We account for risk aversion (in this case a prudent evaluation of

the payo�s) by ignoring the highest 5% realizations. In order not to mix e�ects we run this case without

pricing market risks (setting m?(ω) to zero). All the risk is thus assumed idiosyncratic.

Fuel Load CO2 Market return m(ω)

Low Low Low .55 1.421

Low Low Medium .6 1.380

Low Low High .65 1.338

Low Medium Low 0.95 1.087

Low Medium Medium 1.0 1.045

Low Medium High 1.05 1.003

Low High Low 1.35 0.753

Low High Medium 1.4 0.711

Low High High 1.45 0.669

Medium Low Low 0.65 1.338

Medium Low Medium 0.7 1.296

Medium Low High 0.75 1.254

Medium Medium Low 1.05 1.003

Medium Medium Medium 1.1 0.962

Medium Medium High 1.15 0.920

Medium High Low 1.45 0.669

Medium High Medium 1.5 0.627

Medium High High 1.55 0.585

High Low Low 0.75 1.254

High Low Medium 0.8 1.212

High Low High 0.85 1.171

High Medium Low 1.15 0.920

High Medium Medium 1.2 0.878

High Medium High 1.25 0.836

High High Low 1.55 0.585

High High Medium 1.6 0.543

High High High 1.65 0.502

Table 8: Market return and linear stochastic discount factor
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6.7 Simulation results

The following table summarizes the computational results; we only report the investments in the di�erent

types of plants, the total capacity and the shortfall (see Joskow , 2007 and the discussion of the �missing

money" for an explanation of the shortfall) and the average baseload price:

Coal CCGT OCGT Total Max Shortfall Average Baseload Price

Deterministic � (Section 1.2) 20000 40000 20000 80000 6000 60.98

Stochastic � (Section 1.3) 20000 46000 6000 72000 22.6 60.70

Elastic demand � (Section 2.1) 20340 40780 0 61120 0 60.89

Elastic Dmand DSM � (Section 2.3) 24120 37690 0 61810 0 60.91

CO2 constraint � (Section 2.3) 27200 38800 6000 72000 22600 59.85

Free Allocation � (Section 2.3.) 28890 43110 0 72000 22600 60.25

Linear discount factor � (Section 4) 12000 54000 6000 72000 22600 61.71

CVAR � (Section 5) 18000 48000 6000 72000 22600 61.16

Table 9: Computational results

The table provides a direct quanti�cation of important e�ects. Moving from a deterministic to a

stochastic environment reinforces the partial load capacities (CCGT). Introducing cross time segment

substitution (moving from Elastic Demand to Elastic Demand with DMS) implies a shift from peak

(OCGT) to base (coal) units. The free allocation of permits (moving from CO2 constraint to Free

Allocation) e�ectively acts as a strong incentive to investments. Finally the introduction of a CVaR

shifts investments from high upfront capital expenditure (coal) to lower upfront capital expenses. All

these phenomena are expected. The equilibrium model allows one to quantitatively explore them.

7 Conclusion

The optimization capacity expansion models of the regulatory period have not yet found their counter-

part in the restructured electricity markets. We present di�erent adaptations of these former optimization

models to the new competitive environment. Our objective is twofold: the model should be interpretable

in terms of market equilibrium in order to �t with the new competition environment; it should also
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account for risk, which is becoming daunting in the industry. We begin with a simple standard two-stage

version of a stochastic optimization capacity expansion model that we immediately convert into a par-

simonious complementarity representation of the investment problem. The discussion then proceed as

follows. Even though we start with an optimization model, we show that the equilibrium formulation can

encompass much more general models that do not derive from an optimization problem; this is important

in a context where demand resources will play an increasing role. This is also important because of

the �urry of new policies a�ecting the sector and distorting its environment from normal competition

conditions. The rest of the paper deals with di�erent treatments of risk encountered in practice. While a

pure risk neutral version of the model is straightforward to construct, things become more di�cult if one

wants to account for risk aversion and how it is treated in corporate �nance. CAPM driven evaluations

are common in practice and the philosophy of project �nance requires to value each plant according to its

own risk pro�le. This is usually done by discounting the cash �ows of individual plants at a plant speci�c

risk adjusted discount rate. Because the risk exposure of a plant depends on the development of the

generation system, this approach e�ectively poses a problem of �xed point, a much more complex object

than what is usually envisaged in practice. We bypass this di�culty by invoking stochastic discount

factors that we directly embed in the equilibrium models. Discounting then takes place at the risk free

rate, therefore eliminates di�culties that occur when di�erent plants are a�ected by di�erent discount

rates. The counterpart is the need to compute risk adjusted or deterministic equivalents of cash �ows.

We discuss two di�erent approaches both based on stochastic discount factors. Linear discount factors

come for standard economic theories like the CAPM, the APT or the multitemporal consumer theory.

They price what is commonly known as �systematic risk�. They fully accommodate the requirements of

project �nance that each plant should be valued on the basis of its own risk exposure. But they limit this

valuation to the risk priced by the market, something which is often, but not always accepted in practice.

Di�culties arise when one insists on accounting for idiosyncratic risk. We do this by resorting to risk

functions that we embed in the equilibrium context. The extension raises interesting questions: while the

insertion of risk functions in a capacity expansion optimization model maintains convexity properties,

this is not so in equilibrium models when we describe idiosyncratic risk by risk functions. The models

can still be written without di�culties. But they loose their convexity properties. This paper does not

discuss the interpretation of this loss of convexity but it suggests that it is deep: because idiosyncratic

risk cannot be traded, the market becomes incomplete a phenomenon that is revealed by the loss the

mathematical properties that guarantee existence and uniqueness of solution (here equilibrium). A nu-

merical illustration illustrates the di�erent features treated in the paper.
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Appendix 1

The optimization model as a perfect competition equilibrium model

Suppose a set of generators, and a set of time segments. A perfect competition equilibrium is a vector

of electricity prices (one price per time segment) and a vector of investments (one per type of capacity)

and generation levels (one per type of capacity and time segment), such that investments and operations

maximize generators' pro�ts at prevailing prices and total generation matches demand in each time seg-

ment.

More explicitly in the single stage view of the equilibrium, a perfect competition equilibrium consists

of a set of electricity prices π(`) and a set in investment and operations levels x(k) and y(k, `), such that

x(k) and y(k, `) maximize the pro�t of generator of capacity k at prices π(`) and the sum of the y(k, `)

over all k matches demand d(`) in time segment `.

Alternatively a two stage view of the problem considers a set of investors in generation capacities that

build/buy capacities and lease them (tolling agreement) to a set of operators of generation capacities that

rent these capacities and sell electricity in a set of time segments. In this set up, a perfect competition

equilibrium is a vector of electricity prices (one per time segment), a vector of capacity prices (one per

time segment), a vector of investment levels (one per type of plant), and a vector of operations levels (one

per type of plant and time segment), such that investment levels maximize investors' pro�ts at prevailing

capacity prices and operations levels maximize operators' pro�ts at prevailing electricity and capacity

prices.

More explicitly, in the the operators' model, a perfect competition equilibrium in the second stage

consists of a set of electricity prices π(`), a set of rental capacity prices µ(k, `), a set of capacities x(k)

of plant k, and a set of operations level y(k, `), such that the operator of technology maximizes its pro�t

by renting x(k) of capacity k at price µ(k, `) and selling y(k, `) with that capacity at price π(`) and the

sum of the y(k, `) over all k matches demand d(`) in time segment `. Similarly, in the investor's and

overall models, a perfect competition equilibrium in the �rst stage consists of a set of capacity rental
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prices µ(k, `), a set of investments in capacity x(k) such that x(k) maximizes the pro�t of investors

in technology k when rental price is µ(k, `). The two stage perfect competition equilibrium is a set of

electricity price π(`) and rental price µ(k, `), investments x(k) and operations levels y(k, `) that form a

perfect competition equilibrium in both the �rst and second stages.

Proposition : relation between the optimization and the perfect competition

equilibrium problems

The two de�nitions of the perfect competition equilibrium are equivalent in the sense that a perfect com-

petition equilibrium of one type is also a perfect competition equilibrium of the other type. The solution

of the optimization problem is a perfect competition equilibrium and conversely.

Proof. Verify that the complementarity conditions of the three problems are identical.

Appendix 2: Properties of µ(x,K)

2.1. µ(x,K) is a subgradient of Q(x)

Rewrite problem (1) as

Q(x) =
∑
`∈L

τ(`)Q(x, `)

where

Q(x, `) = min
y(k,`),z(`)

∑
k∈K

[c(k) y(k, `) + PC z(`)]

s.t. 0 ≤ x(k)− y(k, `) µ(k, `)

0 ≤
∑
k∈K

y(k, `) + z(`)− d(`) π(`)

0 ≤ y(k, `)

One knows that

µ(K, `) ∈ ∂xQ(x, `)

and hence since
Q(x) =

∑
`∈L

τ(`)Q(x, `)

µ(K) =
∑
`

τ(`)µ(K, `) ∈ ∂Q(x)
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2.2. µ(x;K) is multivalued

Consider a time segment ` and a set of capacities x(k) such that

0 = x(k)− y(k, `) k = 1, · · · , k∗

0 = y(k, `) k > k∗∑
k y(k, `) = d(`).

One can check that
π(`) = c(k∗ − 1)

µ(k, `) = π(`)− c(k) k ≤ k∗ − 1

µ(k, `) = 0 k ≥ k∗

is a vector of dual variables satisfying the short term model. Alternatively, one also veri�es that

π(`) = c(k∗)

µ(k, `) = π(`)− c(k) k ≤ k∗

µ(k, `) = 0 k > k∗

is also a vector of dual variables satisfying the short term model.

2.3. µ(x,K) is a gradient of MSTW(x, ω)

Rewrite problem (24) to (27)

MSTW(x, ω) =
∑
`∈L

τ(`) MSTW(x, ω, `)

where

MSTW(x, ω, `) = min
y(k,`)

[∑
k∈K

c(k, ω) y(k, `, ω)−
∫ d(`,ω)

0

p(ξ, `, ω)dξ

]

s.t. 0 ≤ x(k)− y(k, `, ω) µ(k, `)

0 ≤
∑
k∈K

y(k, `, ω)− d(`, ω) π(`)

0 ≤ y(k, `, ω).

The function is di�erentiable for any point x(K) where the short term complementarity conditions are

strict, that is such that 0 = x(k)− y(k, `) implies y(k + 1, `) > 0. Consider a point where this condition

is not satis�ed, that is,

y(k∗, `, ω) = 0 < x(k∗)

0 < y(k∗ − 1, `, ω) = x(k∗ − 1).
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Because d(`, ω) > 0 one has

π(`, ω) = p(d(`, ω)

which is uniquely determined and hence

µ(k∗ − 1, `, ω) = π(`, ω)− c(k∗ − 1, ω)

is also uniquely determined.

Last, µ(k∗, `, ω) = 0 since

x(k∗)− y(k∗, `, ω) > 0.

The subdi�erential boils down to a single point. Because the subdi�erential is upper semicontinuous, this

implies that it is continuous.

Appendix 3: De�nition of monotonicity

Let µ(x) be a mapping from Rn into Rn. µ(x) is monotone if

[µ(x)− µ(y)]T (x− y) ≥ 0 for all x and y.

The de�nition extends to point to set mapping as follows. Let µ(x) be a point to set mapping from Rn

to Rn. µ(x) is monotone if for any x, y, there exists

µx ∈ µ(x); µy ∈ µ(y)

such that

(µx − µy)T (x− y) ≥ 0.

Appendix 4: De�nition of coherent risk function

The following de�nitions are taken from Shapiro et al. (2009).

• A. Let Z be a linear space of random outcome Z(ω). ρ(Z) satis�es the following axioms.

• A1. Convexity. ρ(tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′) for all t ∈ [0, 1] and all Z,Z ′ ∈ Z

• A2. Monotonicity. If Z,Z ′ ∈ Z and Z ≥ Z ′ the ρ(Z) ≥ ρ(Z ′).

• A3. Translation equivariance if a ∈ R and Z ∈ Z then ρ(Z + a) = ρ(Z) + a
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• A4. Positive homogeneity. If t > 0 and Z ∈ Z then ρ(tZ) = tρ(Z).

The move from a risk function to a valuation function obtains by replacing the convexity axiom A1 by a

concavity axiom A'1.

• A'1. Concavity. ρ(tZ + (1− t)Z ′) ≥ tρ(Z) + (1− t)ρ(Z ′) for all t ∈ [0, 1] and all Z,Z ′ ∈ Z.
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